Pages

Tuesday, August 3, 2010

Nanotechnology

Introduction

Manufactured products are made from atoms. The properties of those products depend on how those atoms are arranged. If we rearrange the atoms in coal, we get diamonds. If we rearrange the atoms in sand (and add a pinch of impurities) we get computer chips. If we rearrange the atoms in dirt, water and air we get grass.
Since we first made stone tools and flint knives we have been arranging atoms in great thundering statistical herds by casting, milling, grinding, chipping and the like. We’ve gotten better at it: we can make more things at lower cost and greater precision than ever before. But at the molecular scale we’re still making great ungainly heaps and untidy piles of atoms.

Nanotechnology is about rearranging atoms whichever way we want.
That’s changing. In special cases we can already arrange atoms and molecules exactly as we want. Theoretical analyses make it clear we can do a lot more. Eventually, we should be able to arrange and rearrange atoms and molecules much as we might arrange LEGO blocks. In not too many decades we should have a manufacturing technology able to:

•    Build products with almost every atom in the right place.
•    Do so inexpensively.
•    Make most arrangements of atoms consistent with physical law.

Often called nanotechnology, molecular nanotechnology or molecular manufacturing, it will let us make most products lighter, stronger, smarter, cheaper, cleaner and more precise.
The technology allows us to work on a macroscopic scale.

The advantages of nanotechnology

One of the basic principles of nanotechnology is positional control. At the macroscopic scale, the idea that we can hold parts in our hands and assemble them by properly positioning them with respect to each other goes back to prehistory: we celebrate ourselves as the tool using species. Our wisdom and our knowledge would have done us scant good without an opposable thumb: we’d still be shivering in the bushes, unable to start a fire.

At the molecular scale, the idea of holding and positioning molecules is new and almost shocking. However, as long ago as 1959 Richard Feynman, the Nobel prize winning physicist, said that nothing in the laws of physics prevented us from arranging atoms the way we want: “…it is something, in principle, that can be done; but in practice, it has not been done because we are too big.”

What would it mean if we could inexpensively make things with every atom in the right place?

Products could be much lighter, stronger, and more precise.
•    For starters, we could continue the revolution in computer hardware right down to molecular gates and wires — something that today’s lithographic methods (used to make computer chips) could never hope to do.
•    We could inexpensively make very strong and very light materials: shatterproof diamond in precisely the shapes we want, by the ton, and over fifty times lighter than steel of the same strength.
•    We could make a Cadillac that weighed fifty kilograms, or a full-sized sofa you could pick up with one hand.
•    We could make surgical instruments of such precision and deftness that they could operate on the cells and even molecules from which we are made — something well beyond today’s medical technology.
The list goes on — almost any manufactured product could be improved, often by orders of magnitude.

What will we be able to make?

Nanotechnology should let us make almost every manufactured product faster, lighter, stronger, smarter, safer and cleaner. We can already see many of the possibilities as these few examples illustrate. New products that solve new problems in new ways are more difficult to foresee, yet their impact is likely to be even greater. Could Edison have foreseen the computer, or Newton the communications satellite?
1. Improved transportation
2. Atom computers
3. Military applications
4. Solar energy
5. Medical uses

How long?

The single most frequently asked question about nanotechnology is: How long? How long before it will let us make molecular computers? How long before inexpensive solar cells let us use clean solar power instead of oil, coal, and nuclear fuel? How long before we can explore space at a reasonable cost?6
The scientifically correct answer is: I don’t know.
From relays to vacuum tubes to transistors to integrated circuits to Very Large Scale Integrated circuits (VLSI) we have seen steady declines in the size and cost of logic elements and steady increases in their performance.





Conclusion: 

Nanotechnology is prediced to be developed by 2020 but much depends on our commitment to its research.
•    Extrapolation of these trends suggests we will have to develop molecular manufacturing in the 2010 to 2020 time frame if we are to keep the computer hardware revolution on schedule.
•    Of course, extrapolating past trends is a philosophically debatable method of technology forecasting. While no fundamental law of nature prevents us from developing nanotechnology on this schedule (or even faster), there is equally no law that says this schedule will not slip.
•    Much worse, though, is that such trends imply that there is some ordained schedule — that nanotechnology will appear regardless of what we do or don’t do. Nothing could be further from the truth. How long it takes to develop this technology depends very much on what we do. If we pursue it systematically, it will happen sooner. If we ignore it, or simply hope that someone will stumble over it, it will take much longer. And by using theoretical, computational and experimental approaches together, we can reach the goal more quickly and reliably than by using any single approach alone.
While some advances are made through serendipitous accidents or a flash of insight, others require more work. It seems unlikely that a scientist would forget to turn off the Bunsen burner in his lab one afternoon and return to find he’d accidentally made a Space Shuttle.
Like the first human landing on the moon, the Manhattan project, or the development of the modern computer, the development of molecular manufacturing will require the coordinated efforts of many people for many years. How long will it take? A lot depends on when we start.

No comments:

Post a Comment